Temperature Control

- Dual zone with resistive element element heaters heats the entire system
- 24V resistive heaters
- Top heater provides heating to gas panel and chamber lid
- Bottom heater provides heating to chamber body
- PID controller with software enables setting control temperature and out of range trip points
Interlock/Safety Features

Process Pressure – detects pressure < 300 torr to enable HF/EtOH delivery valves to operate

Temperatures – detects out of range for critical components (Chamber, Vaporizer, HF line option)

Door or Lid – gas panel lid open

Exhaust – extraction hood exhaust sufficient (SYSTEM only)

Pump – foreline vacuum detect (SYSTEM only)

Liquid Leak – Detects Alcohol Leak (SYSTEM only)

Calibration – checks for system calibration
System Features for Multiuser Facilities

- **Password Protected Advanced Screens**
 - Critical settings are password protected from a “standard” user – who has limited access to the etch portion of the recipe relating to the etch length (etch rate * etch time)

- **Hidden Manual Mode Feature**
 - Manual Mode Screen can be configured to be hidden (only available to tool owner) to prevent manual valve operation

- **Recipe Lock Feature**
 - Parameters on the Recipe Editor Screen can be locked independently allowing tool owner to create, test and then “lock” any parts of the recipe. The standard user will only be able to edit parameters made available by the tool owner.

- **Interlock (Door)**
 - Can be used to enable/disable tool to limit use through a host computer. Has been used to log and bill time on tool.
Maintenance

- Chamber body and gas diffuser plate slide forward and can be removed for easy cleaning
PRIMAXX® uEtch SYSTEM

- Integrated system with built-in HF gas cabinet, reduced pressure regulator and heated delivery line to uEtch module
- Facilities bulkhead for easy connections
- 27” x 27” footprint, 69” high
- Requires 125 mm exhaust connection, electrical power, dry vacuum pump, process nitrogen and Compressed Dry Air
Scalable – from R&D to Production

- uEtch process regime is similar to SPTS HF production configurations
- Process transfer from uEtch to Monarch3/25 platforms readily achievable

Monarch 3 with auto-loader

Monarch25 process module
PRIMAXX® VHF Etch Release Technology

Performance – Basics
Etch Rate dependencies

- **Increases** with lower temperature and higher pressures
- **Decreases** with higher temperature and lower pressures
- Uniformity degrades as etch rate increases
Etch Rate Control – HF_{pp} using HF Flow

- HF_{pp} is the dominant parameter used to control etch rate
- Increasing Total Gas Flow (and Total N_2) without changing HF flow rate reduces etch rate because HF_{pp} is reduced

HF Partial Pressure

$$HF_{pp} = \frac{HF \text{ Vapor Flow} \times \text{Pressure}}{\text{Total Gas Flow}}$$

20% increase in $HF_{pp} = 40\%$ increase in etch rate when in a controlled regime
Alcohol in the PRIMAXX® VHF Process

- Alcohol is **required** to ionize the HF and activate etching
- Alcohol influences within wafer etch uniformity
- Ethanol vapor pressure most compatible with VHF

Alcohol Partial Pressure =
\[
\frac{\text{Alcohol Vapor Flow} \times \text{Pressure}}{\text{Total Gas Flow}}
\]

+ 1% \text{Alic}_{pp} \sim + 1\% \text{etch rate (up to saturation)}
Typical Two Step Etch Approach

- Initial oxide loading often high (field oxide, exposed BOX)
- Once etched to handle wafer (ER1), exposed area small

Exosed Oxide Area - Design

% Area of Lateral Etch % Area of Vertical Etch

% Area of Vertical Etch >> % Area of Lateral Etch

Lateral Undercut ER2 > Vertical Clearing ER1
Process Regimes for Two Step Etching

<table>
<thead>
<tr>
<th>Clearing Step – ER 1</th>
<th>Undercut Step – ER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>High oxide %</td>
</tr>
<tr>
<td></td>
<td>< 350 A/min</td>
</tr>
<tr>
<td>Fast</td>
<td>Low oxide %</td>
</tr>
<tr>
<td></td>
<td>300 - 750 A/min</td>
</tr>
<tr>
<td></td>
<td>< 0.12 um/min</td>
</tr>
<tr>
<td></td>
<td>0.15 - 0.25 um/min</td>
</tr>
</tbody>
</table>

High Stiction Probability

Low Stiction Probability
Process Loading Effects

- Amount of exposed oxide is the biggest loading factor
 - Device/wafer layout, # of wafers, presence of back side oxide
- Uniformity degrades with increasing etch rate
- Presence of exposed metals limits maximum etch rates
Materials Compatibility with VHF

<table>
<thead>
<tr>
<th>Material</th>
<th>Sacrificial Oxide</th>
<th>Protective Layer</th>
<th>Metal/Electrode /Adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Oxide, TEOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOI bonded oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECVD oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin on oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doped oxides BPSG, PSG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doped glass, Pyrex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low temperature spin on glass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECVD oxide (SiH₄+N₂O)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon (poly, amorphous, single crystal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina (thick)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALD alumina (1000A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon Carbide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-Rich LPCVD silicon nitride (low stress)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoichiometric PECVD nitride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoresist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRIMAXX® VHF Etch Release Technology

Performance – Wafer Processing
uEtch Performance Specifications

- Processes up to 1 x 200mm wafer per run
 - Or silicon wafer carrier/optional “pocket” carrier for die level
- Etch Specifications (200 mm blanket TOX etching)
 - Etch rate range: 100 A/min - 1000 A/min
 - WIW ≤ 12%, R2R ≤ 15% (r/2x at 100 A/min, ER dependent); device wafer uniformities are typically better
uEtch Results – TOX Wafers

Run 1
- 260.76 average
- 7.76 SD
- -2.98% s/x
- 26.72685 range
- -5.12% r/2X

Run 2
- 241.54 average
- 6.58 SD
- -2.72% s/x
- 22.363 range
- -4.63% r/2X

Run 3
- 231.65 average
- 7.57 SD
- -3.27% s/x
- 27.52245 range
- -5.94% r/2X

Run 4
- 242.15 average
- 7.71 SD
- -3.18% s/x
- 31.9858 range
- -6.60% r/2X

R2R statistics
- average: 244.03
- sd: 12.152039
- s/x: 4.98%
- r/2x: 5.97%

© 2012 SPTS Technologies
uEtch Patterned Wafers – Methodology

- Use TWO “patterned” test wafers to establish WIW% and R2R repeatability

- Use standard etch methodology:
 - Clearing Step – remove exposed oxide using a slow to moderate etch rate to control uniformity under high loading conditions
 - Undercutting Step – use a higher etch rate since the exposed oxide percentage has been reduced by an order of magnitude

- Etch test on each wafer (FOUR tests total)
 - Etch ~ 50% of exposed vertical thickness of BOX layer (ER_{CL1})
 - Etch remaining exposed oxide, confirm clearing rate (ER_{CL2})
 - Etch laterally (undercut) using higher etch rate (ER_{UC1})
 - Repeat for a second lateral etch (ER_{UC2})
200 mm wafer – 69 test die with 20% exposed oxide to simulate “typical” MEMS wafer

Each die consists of 5 identical test verniers and a 1 cm² oxide pad

Each vernier has equispaced trenches with varying separations up to 20 um
uEtch Patterned Wafers – Etch Runs

- **VHF Run 1**: Pre-measure 69 oxide pads with thickness mapping tool.
- **VHF Run 2**: Etch 50% exposed pads and calculate \(\text{ER}_{CL1} \) with thickness mapping tool.
- **VHF Run 3**: Etch to substrate and calculate \(\text{ER}_{CL2} \) with thickness mapping tool. (NOTE THAT SOME UNDERCUT OCCURS - ISOTROPIC ETCH)
- **VHF Run 4**: Etch laterally by time and calculate \(\text{ER}_{UC1} \) with optical inspection of vernier deflection.
- **VHF Run 4**: Etch laterally by time and calculate \(\text{ER}_{UC2} \) with optical inspection of vernier deflection.
Sequential chart of Etch Rate and R/2x U % for each step (TWO patterned wafers)

- **Patterned Wafer Etch Rates**
 - PP01 clear
 - PP02 clear
 - PP01 UC
 - PP02 UC

- **Patterned Wafer Uniformities**
 - PP01 clear
 - PP02 clear
 - PP01 UC
 - PP02 UC

- **Total Etch Time** = 90 minutes (excludes overhead time)
- **Average Total Etch Length** = 8.1 um
- **Average Etch Rate** = 0.090 um/min
Etch Stability – Very Long Undercuts

- SOI based sample, full removal of BOX layer with mm length undercuts

Undercut Length versus Etch Time

<table>
<thead>
<tr>
<th>POSITION</th>
<th>UNDERCUT (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>244</td>
</tr>
<tr>
<td>Center</td>
<td>240.1</td>
</tr>
<tr>
<td>Bottom</td>
<td>241.2</td>
</tr>
<tr>
<td>Left</td>
<td>242.1</td>
</tr>
<tr>
<td>Right</td>
<td>241.2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>241.7</td>
</tr>
<tr>
<td>WIW% (SD)</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Devices are cleared at 1080 minutes. Only the frame remains bound.
Etch Stability at Ultra Low Etch Rates

- Controlled, repeatable etching on 150 mm blanket TOX wafers at ultra low etch rates from 60 A/min to 3 A/min
PRIMAXX® VHF Etch Release Technology

Conclusions
Competitive Processes that Use Water

- PRIMAXX® VHF technology with no water added has a significant advantage in terms of corrosion/surface degradation (water is more aggressive)
- Silicon nitride selectivities are similar
- Materials such as Al, Al/Si/Cu and Al\textsubscript{2}O\textsubscript{3} typically show NO attack at viable production etch rates in the PRIMAXX® VHF process – compared to some limitations in an etch environment with more water present
ambient versus elevated temperatures

- Etch rate versus temperature curve has a steep slope at typical ambient temperature – so small changes in T have a very significant effect on etch rate
 - At 35 - 60 C this curve is much flatter (SPTS temperature range)
 - Heated chamber gives within wafer temperature uniformity of +/- 0.2C AND IS VERY REPEATABLE giving excellent run to run performance

- Elevated temperature helps by-product desorption directly into the gas phase

- Silicon nitride selectivity is generally better at lower temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Etch Rate</th>
<th>Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>35C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VHF Temperature Characteristic
Optimal Process Regime

Pressure	Etch Rate	Uniformity
75 torr | | |
50 torr | | |
150 torr | | |

Optimal Process Regime
Conclusions

- PRIMAXX® VHF
 - Dry, reduced pressure, gas phase oxide etch release process
 - Proven, patented technology eliminates stiction, increases yields
- Compatible with exposed Al/alloy features (mirrors, bond-pads) and common MEMS materials (NO CORROSION)
- Tools have high uptimes and low cost of ownership
 - **NO** consumables, low power, simple routine maintenance
 - HF/alcohol/gases are low cost
- SPTS provides worldwide sales/service coverage
- Product range for R&D through low, medium, high volume production
- 80+ VHF process modules shipped to 60+ customers
- 100’s of successful customer demonstrations means VHF “process knowledge base” second to none