

CMS

CRYSTALLINE MIRROR SOLUTIONS

Semiconductor Supermirrors: When planar wafer bonding just isn't hard enough...

September 5, 2019

- Two main classes of thin-film reflective optical coatings
 - 1. simple metallic mirrors: single or protected Ag, Al, or Au layer
 - 2. interference coatings: alternating transparent dielectric films
- Properly designed interference coatings exhibit lower losses

Interference Coatings (a.k.a. Bragg Mirrors)

Interference leads to rapid decay of optical field in Bragg reflector

Three loss mechanisms:

- i) transmission
- ii) absorption
- iii) scatter

• Alternating layers of high / low index quarter-wave thickness thin films

- at Bragg wavelength internal reflections add in phase, max. reflectivity
- Individual layers are transparent, yielding low absorption reflectors
 - losses ultimately constrained by layer design, impurities, and roughness

- Alternating layers of high / low index quarter-wave thickness thin films
 - at Bragg wavelength internal reflections add in phase, max. reflectivity
- Individual layers are transparent, yielding low absorption reflectors
 - losses ultimately constrained by layer design, impurities, and roughness

Current amorphous coatings

Current amorphous coatings

State-of-the-art multilayer mirrors: ion-beam sputtered Ta₂O₅/SiO₂

- Multilayer of amorphous thin films via ion beam sputtering (IBS)
- Phenomenal optical properties: high R, low absorption and scatter
- Flexible choice of substrates assuming excellent surface quality
 - super-polished SiO₂, Si, ULE, sapphire, etc.

- First demonstrated in 1975
 - interference coatings by van der Ziel and Ilegems, Bell Labs
- Primary application: VCSELs
 - K. Iga's group (Tokyo) and Bell Labs (Jewell et al.)
 - VCSELs consist of highreflectivity mirrors surrounding a semiconductor microcavity
 - global VCSEL market estimated to be worth \$3.6B by Q4 2020
- Lattice matching constraints limit substrate selection
 - monocrystalline multilayers require a crystalline template

Large-aperture linear VCSEL array, Aerius Photonics, LLC (FLIR Electro-Optical Components)

- AlGaAs multilayer with varying Al content for index contrast
 - high index layers consist of binary GaAs thin films
 - 8% Ga incorporated in low index AlGaAs layers to slow oxidation in ambient
- Epitaxy generates DBRs with low defect density, high purity, and excellent thickness control
 - limited by lattice matching...
- Leverage transfer & direct bonding to overcome this
 - commonly employed process, e.g. for manufacturing SOI (silicon-on-insulator) wafers up to 45 cm in diameter

- AlGaAs multilayer with varying Al content for index contrast
 - high index layers consist of binary GaAs thin films
 - 8% Ga incorporated in low index AlGaAs layers to slow oxidation in ambient
- Epitaxy generates DBRs with low defect density, high purity, and excellent thickness control
 - limited by lattice matching...
- Leverage transfer & direct bonding to overcome this
 - commonly employed process, e.g. for manufacturing SOI (silicon-on-insulator) wafers up to 45 cm in diameter

Epitaxial multilayers on arbitrary substrates

Scalability of Crystalline Coatings

Physical vapor deposition can be realized on multiple substrates simultaneously

Wafer-scale batch fabrication enables the generation of many GaAs/AlGaAs mirror disks, though bonding remains a serial process

GaAs wafers (seed crystal)

Crystal growth via MBE

Microfab & bonding

- Crystalline coatings entail a unique manufacturing process
 - we purchase base GaAs wafers from an external supplier
 - epitaxial growth of a custom designed multilayer w/ MBE
 - using a proprietary process we remove and directly bond the single-crystal multilayer to a super-polished substrate

Molecular beam epitaxy

Metal organic chemical vapor deposition

- MBE enables low background doping, minimizing absorption
- Oval defects in GaAs (spitting Ga source) are a persistent problem
- C incorporation in AlGaAs is a major barrier to achieving low absorption
- An optimized MOCVD process can generate defect free films

Molecular beam epitaxy

- MBE enables low background doping, minimizing absorption
- Oval defects in GaAs (spitting Ga source) are a persistent problem

Metal organic chemical vapor deposition

- C incorporation in AlGaAs is a major barrier to achieving low absorption
- An optimized MOCVD process can generate defect free films

Substrate-Transfer Process: Step 1, Litho and Etch

Substrate-Transfer Process: Step 1, Litho and Etch

epi structure

wafer

- Contact lithography is used to define the coating geometry
 - a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate (which is typically 675 µm thick)
- Lapping is used to thin the underlying wafer to ~100 μm
 - singulated die are generated with excellent control of the lateral geometry

• Contact lithography is used to define the coating geometry

- a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate (which is typically 675 µm thick)
- Lapping is used to thin the underlying wafer to ~100 µm
 - singulated die are generated with excellent control of the lateral geometry

- Contact lithography is used to define the coating geometry
 - a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate (which is typically 675 µm thick)
- Lapping is used to thin the underlying wafer to ~100 μm
 - singulated die are generated with excellent control of the lateral geometry

- Contact lithography is used to define the coating geometry
 - a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate (which is typically 675 µm thick)
- Lapping is used to thin the underlying wafer to ~100 μm
 - singulated die are generated with excellent control of the lateral geometry

- High optical performance realized with acceptable yield
 - typical crystalline coatings are 0.5-1 inch in diameter
 - maximum delivered coating diameter to date is 3" / 76.2 mm
 - we can successfully transfer epilayers onto surfaces w/ a 10-cm ROC

Semiconductor-based optical interference coatings transferred to alternative substrates (SiO₂, Si, SiC, Al₂O₃, YAG, YVO₄, diamond, etc.)

> LOWER Brownian noise

ULTRAPRECISE measurements of space and time

LOWER mid-IR absorption

HIGH RESOLUTION trace gas sensing

10

10

Based on our unique advantages we have developed 3 products and 1 service line:

Based on our unique advantages we have developed 3 products and 1 service line:

Custom Optical Reference Cavities and Low-Noise Optics

- Dozens of cavities & mirrors deployed on SiO₂, Si, and Al_2O_3 subs.
- Mirror diameters of 0.5" to 2" and spacer lengths up to 30 cm
- Wavelengths from ~1000 nm to 1600 nm, RT and cryo (4-124 K)
 - excess losses < 3 ppm measured via ringdown, reflectivity > 99.999%

Custom Optical Reference Cavities and Low-Noise Optics

- Dozens of cavities & mirrors deployed on SiO₂, Si, and Al_2O_3 subs.
- Mirror diameters of 0.5" to 2" and spacer lengths up to 30 cm
- Wavelengths from ~1000 nm to 1600 nm, RT and cryo (4-124 K)
 - excess losses < 3 ppm measured via ringdown, reflectivity > 99.999%

Cryogenic Optical Performance

- Finesse of nearly 400,000 @ Si CTE zero-crossing temp. (~123 K)
 - total losses (T+S+A) of 8 ppm at center wavelength of 1542 nm
 - target transmission of 5±1 ppm realized, excess losses (S+A) < 3 ppm

Rack-Mounted Commercial Ultrastable Laser Systems

 the first rack-mounted lasers with a frequency instability ~10⁻¹⁶ (<100 mHz linewidth)

Substrate-transferred crystalline coatings exhibit excellent optical and thermo-mechanical quality

- Elastic loss reduction of 10-100 × over amorphous films
 - AlGaAs room temperature mech. Q ~ 4×10^4 ($\phi_{RT} \approx 2 \times 10^{-5}$)
 - AlGaAs cryogenic performance: Q > 1 × 10⁵ ($\phi_{min} \approx 4.5 \times 10^{-6}$)

Optical losses on par-with with the best IBS coatings

- absorption < 1 ppm via PCI in the NIR, scatter loss < 3 ppm
- cavity finesse > 600,000 (R > 99.9995%) measured at 1550 nm
- exceptional MIR performance, ppm-level losses to 5+ μm
- High conductivity $(30_{\perp}, 70_{\parallel} \text{ Wm}^{-1} \text{K}^{-1})$, promising LIDT
 - measured CW > 50 MW/cm² without damage (1064 nm)
 - typical LIDT values for ~1 µm & ns pulses: 2-8 J/cm², ultimately limited by TPA (βGaAs ≈ 20 cm/GW, Eg ≈ 870 nm)

Thank you for your attention!